Constraining Ozone by Assimilating MLS and OMI Data

Krzysztof Wargan, Ivanka Stajner and Steven Pawson

Global Modeling and Assimilation Office, NASA GSFC

Objectives

Produce accurate global ozone analyses from "stripes" of total ozone from OMI and stratospheric profiles from MLS

Some reasons:

- Improve knowledge of stratospheric structures
- Estimates of tropospheric ozone columns
- Understanding of ozone structure in UTLS

Today's goal:

 Demonstrate the way in which the assimilation leads to accurate ozone distributions in the UTLS

Stratospheric Ozone Column: Assimilated MLS+OMI -vs- SAGE II

Assimilation into GEOS-4 DAS

Ozone decoupled from meteorology

Model includes P&L chemistry

MLS concentrations at 20 levels (216 - 0.14hPa)

Error estimates provided with retrievals

OMI data super-obbed to a 2°×2.5° resolution

Good agreement between 200-1hPa partial columns in assimilation and SAGE-II data

Structure in the Assimilated Ozone

Snapshot of ozone at 200hPa shows a rich structure, even with a model resolution of 1°×1.25°

Comparison with one MOZAIC flight reveals broad alignment of features with the in-situ measurements

The structure in assimilated UTLS ozone is realistic when OMI+MLS data are used in GEOS-4, where the transport properties are demonstrably reasonable

How Does Ozone Structure Arise?*

Alternatives:

- a) Assimilation constrains the largest scales and transport introduces structure
- b) Assimilation corrects the locations of small-scale features introduced by transport

Experiments:

Use unconstrained (modeled) ozone and assimilated ozone in an otherwise identical system (transport with analyzed meteorology in GEOS-4 GCM)

* Alternately: "The Origin of Pieces"

MOZAIC Sampling in UTLS

Distribution of ozone in the UTLS

0.3

Ozone [ppmv]

0.4

0.5

0.6

0.0

0.1

0.2

Variability: Power Spectra

Power spectra of ozone mixing ratio calculated from 4000-km long flight segments and interpolated model/analysis

- Variability is underestimated in model and analysis
- Higher amplitudes in assimilation are likely a reflection of reduced bias
- Model and assimilation show the same slope

What Spatial Scales are Captured?

Aircraft data exhibit larger variability at small scales, even after averaging

A compactly supported Gaussian-like smoother decreases variability of aircraft data. Here 480 km smoothing is applied

Impacts of Smoothing MOZAIC

Summary

How does ozone structure arise?

Assimilation constrains the largest scales and transport introduces structure

What scales are reasonably captured?

- Assimilation captures scales of about 480km (about six grid boxes in GEOS-4) - consistent with model transport Implications:
- Structure in the stratospheric ozone analyses depends on accuracy of transport in the model
- Tropospheric constituent assimilation: the nature of transport (and its error) as well as the observations are very different from the stratosphere